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25 Plane-sweep: 
 A general-purpose algorithm 
 for two-dimensional problems 
 illustrated using line segment intersection 

Plane-sweep is an algorithm schema for two-dimensional geometry of great 
generality and effectiveness, and algorithm designers are well advised to try it first. It 
works for a surprisingly large set of problems, and when it works, tends to be very 
efficient. Plane-sweep is easiest to understand under the assumption of nondegenerate 
configurations. After explaining plane-sweep under this assumption, we remark on 
how degenerate cases can be handled with plane-sweep. 

25.1 The line segment intersection test 

We present a plane-sweep algorithm [SH 76] for the line segment intersection test: 

 Given n line segments in the plane, determine whether any two intersect; 
 and if so, compute a witness (i.e., a pair of segments that intersect). 

Bounds on the complexity of this problem are easily obtained. The literature on 
computational geometry (e.g., [PS 85]) proves a lower bound Ω(n · log n). The 
obvious brute force approach of testing all n · (n – 1) / 2 pairs of line segments 
requires Θ(n2) time. This wide gap between n · log n and n2 is a challenge to the 
algorithm designer, who strives for an optimal algorithm whose asymptotic running 
time O(n · log n) matches the lower bound. 

Divide-and-conquer is often the first attempt to design an algorithm, and it comes in 
two variants illustrated in Fig. 25.1: (1) Divide the data, in this case the set of line 
segments, into two subsets of approximately equal size (i.e., n / 2 line segments), or 
(2) divide the embedding space, which is easily cut in exact halves. 
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Figure 25.1: Two ways of applying divide-and-conquer 
to a set of objects embedded in the plane. 

In the first case, we hope for a separation into subsets S1 and S2 that permits an 
efficient test whether any line segment in S1 intersects some line segment in S2. 
Figure 25.1 shows the ideal case where S1 and S2 do not interact, but of course this 
cannot always be achieved in a nontrivial way; and even if S can be separated as the 
figure suggests, finding such a separating line looks like a more formidable problem 
than the original intersection problem. Thus, in general, we have to test each line 
segment in S1 against every line segment in S2, a test that may take Θ(n2) time. 

The second approach of dividing the embedding space has the unfortunate 
consequence of effectively increasing our data set. Every segment that straddles the 
dividing line gets "cut" (i.e., processed twice, once for each half space). The two 
resulting subproblems will be of size n' and n", respectively, with n' + n" > n, in the 
worst case n' + n" = 2 · n. At recursion depth d we may have 2d · n subsegments to 
process. No optimal algorithm is known that uses this technique. 

The key idea in designing an optimal algorithm is the observation that those line 
segments that intersect a vertical line L at abscissa x are totally ordered: A segment s 
lies below segment t, written s <L t, if both intersect L at the current position x and the 
intersection of s with L lies below the intersection of t with L. With respect to this 
order a line segment may have an upper and a lower neighbor, and Fig. 25.2 shows 
that s and t are neighbors at x. 
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Figure 25.2: The sweep line L totally orders the segments that intersect L. 

We describe the intersection test algorithm under the assumption that the 
configuration is nondegenerate (i.e., no three segments intersect in the same point). 
For simplicity's sake we also assume that no segment is vertical, so every segment has 
a left endpoint and a right endpoint. The latter assumption entails no loss of 
generality: For a vertical segment, we can arbitrarily define the lower endpoint to be 
the "left endpoint", thus imposing a lexicographic (x, y)-order to refine the x-order. 
With the important assumption of non-degeneracy, two line segments s and t can 
intersect at x0 only if there exists an abscissa x < x0 where s and t are neighbors. Thus 
it suffices to test all segment pairs that become neighbors at some time during a left-
to-right sweep of L - a number that is usually significantly smaller than n · (n – 1) / 2. 

As the sweep line L moves from left to right across the configuration, the order <L 
among the line segments intersecting L changes only at endpoints of a segment or at 
intersections of segments. As we intend to stop the sweep as soon as we discover an 
intersection, we need to perform the intersection test only at the left and right 
endpoints of segments. A segment t is tested at its left endpoint for intersection with 
its lower and upper neighbors. At the right endpoint of t we test its lower and upper 
neighbor for intersection (Fig. 25.3). 
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Figure 25.3: Three pairwise intersection tests charged to segment t. 
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The algorithm terminates as soon as we discover an intersecting pair of segments. 
Given n segments, each of which may generate three intersection tests as shown in 
Fig. 25.3 (two at its left, one at its right endpoint), we perform the O(1) pairwise 
segment intersection test at most 3 · n times. This linear bound on the number of pairs 
tested for intersection might raise the hope of finding a linear-time algorithm, but so 
far we have counted only the geometric primitive: "Does a pair of segments intersect - 
yes or no?" Hiding in the background we find bookkeeping operations such as "Find 
the upper and lower neighbor of a given segment", and these turn out to be costlier 
than the geometric ones. We will find neighbors efficiently by maintaining the order 
<L in a data structure called a y-table during the entire sweep. 

25.2 The skeleton: Turning a space dimension into a time dimension 

The name plane-sweep is derived from the image of sweeping the plane from left to 
right with a vertical line (front, or cross section), stopping at every transition point 
(event) of a geometric configuration to update the cross section. All processing is done 
at this moving front, without any backtracking, with a look-ahead of only one point. 
The events are stored in the x-queue, and the current cross section is maintained by the 
y-table. The skeleton of a plane-sweep algorithm is as follows: 

 initX;  initY; 
 while  not emptyX  do  { e := nextX;  transition(e) } 

The procedures 'initX' and 'initY' initialize the x-queue and the y-table. 'nextX' returns 
the next event in the x-queue, 'emptyX' tells us whether the x-queue is empty. The 
procedure 'transition', the advancing mechanism of the sweep, embodies all the work 
to be done when a new event is encountered; it moves the front from the slice to the 
left of an event e to the slice immediately to the right of e. 
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25.3 Data structures 

For the line segment intersection test, the x-queue stores the left and right endpoints of 
the given line segments, ordered by their x-coordinate, as events to be processed when 
updating the vertical cross section. Each endpoint stores a reference to the 
corresponding line segment. We compare points by their x-coordinates when building 
the x-queue. For simplicity of presentation we assume that no two endpoints of line 
segments have equal x- or y-coordinates. The only operation to be performed on the x-
queue is 'nextX': it returns the next event (i.e., the next left or right endpoint of a line 
segment to be processed). The cost for initializing the x-queue is O(n · log n), the cost 
for performing the 'nextX' operation is O(1). 

The y-table contains those line segments that are currently intersected by the sweep 
line, ordered according to <L. In the slice between two events, this order does not 
change, and the y-table needs no updating (Fig. 25.4). The y-table is a dictionary that 
supports the operations 'insertY', 'deleteY', 'succY', and 'predY'. When entering the left 
endpoint of a line segment s we find the place where s is to be inserted in the ordering 
of the y-table by comparing s to other line segments t already stored in the y-table. We 
can determine whether s <L t or t <L s by determining on which side of t the left 
endpoint of s lies. As we have seen in Section 14.1, this tends to be more efficient 
than computing and comparing the intersection points of s and t with the sweep line. If 
we implement the dictionary as a balanced tree (e.g., an AVL tree), the operations 
'insertY' and 'deleteY' are performed in O(log n) time, and 'succY' and 'predY' are 
performed in O(1) time if additional pointers in each node of the tree point to the 
successor and predecessor of the line segment stored in this node. Since there are 2 · n 
events in the x-queue and at most n line segments in the y-table the space complexity 
of this plane-sweep algorithm is O(n). 
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Figure 25.4: The y-table records the varying state of the sweep line L. 

25.4 Updating the y-table and detecting an intersection 

The procedure 'transition' maintains the order <L of the line segments intersecting the 
sweep line and performs intersection tests. At a left endpoint of a segment t, t is 
inserted into the y-table and tested for intersection with its lower and upper neighbors. 
At the right endpoint of t, t is deleted from the y-table and its two former neighbors 
are tested. The algorithm terminates when an intersection has been found or all events 
in the x-queue have been processed without finding an intersection: 

 procedure transition(e: event); 
 begin 
  s := segment(e); 
  if  leftPoint(e)  then  begin 
   insertY(s); 
   if  intersect(predY(s), s) or intersect (s, succY(s))  then 
    terminate('intersection found') 
  end 
  else  { e is right endpoint of s }  begin 
   if  intersect(predY(s), succY(s))  then 
    terminate('intersection found'); 
   deleteY(s) 
  end 
 end; 
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With at most 2 · n events, and a call of 'transition' costing time O(log n), this plane-
sweep algorithm needs O(n · log n) time to perform the line segment intersection test. 

25.5 Sweeping across intersections 

The plane-sweep algorithm for the line segment intersection test is easily adapted to 
the following more general problem [BO 79]: 

 Given n line segments, report all intersections. 

In addition to the left and right endpoints, the x-queue now stores intersection points 
as events - any intersection detected is inserted into the x-queue as an event to be 
processed. When the sweep line reaches an intersection event the two participating 
line segments are swapped in the y-table (Fig. 25.5). The major increase in complexity 
as compared to the segment intersection test is that now we must process not only 
2 · n events, but 2 · n + k events, where k is the number of intersections discovered as 
we sweep the plane. A configuration with n / 2 segments vertical and n / 2 horizontal 
shows that, in the worst case, k ∈ Θ(n2), which leads to an O(n2 · log n) algorithm, 
certainly no improvement over the brute-force comparison of all pairs. But in most 
realistic configurations, say engineering drawings, the number of intersections is much 
less than O(n2), and thus it is informative to introduce the parameter k in order to get 
an output-sensitive bound on the complexity of this algorithm (i.e., a bound that 
adapts to the amount of data needed to report the result of the computation). 

x-queue

states of the y-table between events

 

Figure 25.5: Sweeping across an intersection. 
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Other changes are comparatively minor. The x-queue must be a priority queue that 
supports the operation 'insertX'; it can be implemented as a heap. The cost for 
initializing the x-queue remains O(n · log n). Without further analysis one might 
presume that the storage requirement of the x-queue is O(n + k), which implies that 
the cost for calling 'insertX' and 'nextX' remains O(log n), since k ∈ O(n2). A more 
detailed analysis [PS 91], however, shows that the size of the x-queue never exceeds 
O(n · (log n)2). With a slight modification of the algorithm [Bro 81] it can even be 
guaranteed that the size of the x-queue never exceeds O(n). The cost for exchanging 
two intersecting line segments in the y-table is O(log n), the costs for the other 
operations on the y-table remain the same. Since there are 2 · n left and right endpoints 
and k intersection events, the total cost for this algorithm is O((n + k) · log n). As most 
realistic applications are characterized by k ∈ O(n), reporting all intersections often 
remains an O(n · log n) algorithm in practice. A time-optimal algorithm that finds all 
intersecting pairs of line segments in O(n · log n + k) time using O(n + k) storage 
space is described in [CE 92]. 

25.6 Degenerate configurations, numerical errors, robustness 

The discussion above is based on several assumptions of nondegeneracy, some of 
minor and some of major importance. Let us examine one of each type. 

Whenever we access the x-queue ('nextX'), we used an implicit assumption that no 
two events (endpoints or intersections) have equal x-coordinates. But the order of 
processing events of equal x-coordinate is irrelevant. Assuming that no two events 
coincide at the same point in the plane, lexicographic (x, y)-ordering is a convenient 
systematic way to define 'nextX'. 
More serious forms of degeneracy arise when events coincide in the plane, such as 
more than two segments intersecting in the same point. This type of degeneracy is 
particularly difficult to handle in the presence of numerical errors, such as rounding 
errors. In the configuration shown in Fig. 25.6 an endpoint of u lies exactly or nearly 
on segment s. We may not care whether the intersection routine answers 'yes' or 'no' to 
the question "Do s and u intersect?" but we certainly expect a 'yes' when asking "Do t 
and u intersect?" This example shows that the slightest numerical inaccuracy can 
cause a serious error: The algorithm may fail to report the intersection of t and u, 
which it would clearly see if it bothered to look - but the algorithm looks the other 
way and never asks the question "Do t and u intersect?" 
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Figure 25.6: A degenerate configuration may lead to inconsistent results. 

The trace of the plane-sweep for reporting intersections may look as follows: 
1 s is inserted into the y-table. 
2 t is inserted above s into the y-table, and s and t are tested for intersection: No 

intersection is found. 
3 u is inserted below s in the y-table (since the evaluation of the function s(x) may 

conclude that the left endpoint of u lies below s); s and u are tested for intersection, 
but the intersection routine may conclude that s and u do not intersect: u remains 
below s. 

4 Delete u from the y-table. 
5 Delete s from the y-table. 
6 Delete t from the y-table. 

Notice the calamity that struck at the critical step 3. The evaluation of a linear 
expression s(x) and the intersection routine for two segments both arrived at a result 
that, in isolation, is reasonable within the tolerance of the underlying arithmetic. But 
the two results together are inconsistent! If the evaluation of s(x) concludes that the 
left endpoint of u lies below s, the intersection routine must conclude that s and u 
intersect! If these two geometric primitives fail to coordinate their answers, 
catastrophy may strike. In our example, u and t never become neighbors in the y-table, 
so their intersection gets lost. 

Exercises 

1. Show that there may be Θ(n2) intersections in a set of n line segments. 

2. Design a plane-sweep algorithm that determines in O(n · log n) time whether two 
simple polygons with a total of n vertices intersect. 
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3. Design a plane-sweep algorithm that determines in O(n · log n) time whether any 
two disks in a set of n disks intersect. 

4. Design a plane-sweep algorithm that solves the line visibility problem discussed in 
section 24.4 in time O((n + k) · log n), where k ∈ O(n2) is the number of 
intersections of the line segments. 

5. Give a configuration with the smallest possible number of line segments for which 
the first intersection point reported by the plane-sweep algorithm in Section 25.5 is 
not the leftmost intersection point. 

6. Adapt the plane-sweep algorithm presented in Section 25.5 to detect all 
intersections among a given set of n horizontal or vertical line segements. You may 
assume that the line segments do not overlap. What is the time complexity of this 
algorithm if the horizontal and vertical line segments intersect in k points? 

7. Design a plane-sweep algorithm that finds all intersections among a given set of n 
rectangles all of whose sides are parallel to the coordinate axes. What is the time 
complexity of your algorithm? 


