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Organizing and processing Euclidean space 

In Part III we presented a varied sample of algorithms that use simple, mostly static, 
data structures. Part V was dedicated to dynamic data structures, and we presented 
the corresponding access and update algorithms. In this final part we illustrate the use 
of these dynamic data structures by presenting algorithms whose efficiency depends 
crucially on them, in particular on priority queues and dictionaries. We choose these 
algorithms from computational geometry, a recently developed discipline of great 
practical importance with applications in computer graphics, computer-aided design, 
and geographic databases. 

If data structures are tools for organizing sets of data and their relationships, 
geometric data processing poses one of the most challenging tests. The ability to 
organize data embedded in the Euclidean space in such a way as to reflect the rich 
relationships due to location (e.g., touching or intersecting, contained in, distance) is 
of utmost importance for the efficiency of algorithms for processing spatial data. 
Data structures developed for traditional commercial data processing were often 
based on the concept of one primary key and several subordinate secondary keys. 
This asymmetry fails to support the equal role played by the Cartesian coordinate 
axes x, y, z, … of Euclidean space. If one spatial axis, say x, is identified as the 
primary key, there is a danger that queries involving the other axes, say y and z, 
become inordinately cumbersome to process, and therefore slow. For the sake of 
simplicity we concentrate on two-dimensional geometric problems, and in particular 
on the highly successful class of plane-sweep algorithms. Sweep algorithms do a 
remarkably good job at processing two-dimensional space efficiently using two 
distinct one-dimensional data structures, one for organizing the x-axis, the other for 
the y-axis. 
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Literature on computational geometry. Computational geometry emerged in the 
1970s as the most recent major field of algorithm design and analysis. The extremely 
rapid progress of research in this field is reflected by the fact that the few textbooks 
do not yet present a comprehensive sample of the field but rather, describe distinct 
aspects. The following books, taken together, survey the field: [Ede 87], [O'R 87], 
[PS 85], and [Hof 89] 
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