Ch4 Graph theory and algorithms

This chapter presents a few problems, results and algorithms from the vast discipline of Graph theory. All of these topics can be found in many text books on graphs.

Notation: $\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{V}=$ vertices, $\mathrm{E}=$ edges, $|\mathrm{V}|=\mathrm{n},|\mathrm{E}|=\mathrm{m}$. Edges can be symmetric of directed (arcs). Weighted graph $\mathrm{G}=(\mathrm{V}, \mathrm{E}, \mathrm{w})$, w: $\mathrm{E}->$ Reals. We omit other variations. e.g. parallel edges or self-loops.

4.1 Planar and plane graphs

Df: A graph $G=(V, E)$ is planar iff its vertices can be embedded in the Euclidean plane in such a way that there are no crossing edges. Any such embedding of a planar graph is called a plane or Euclidean graph.

The complete graph K 4 is planar

K5 and K3,3 are not planar

Thm: A planar graph can be drawn such a way that all edges are non-intersecting straight lines.
Df: graph editing operations: edge splitting, edge joining, vertex contraction:

Df: G, G' are homeomorphic iff G can be transformed into G' by some sequence of edge splitting and edge joining operations.

Thm (Kuratowski 1930): G is planar iff G contains no subgraph homeomorphic to K5 or K3,3.
Thm (Wagner 1937): G is planar iff G contains no subgraph contractable to K 5 or K3,3.
Ex: Finding subgraphs can be tricky, as the Petersen graph shows:

Left: The Petersen graph is easily seen to be contractable to K5

Right: After removal of 2 edges followed by edge joining, the Petersen graph is seen to contain K3,3

4.2 Euler's formula for plane graphs

A plane graph (i.e. embedded in the plane) contains faces. A face is a connected region of the plane bounded by edges. If the graph is connected, it is said to contain a single component. If it is disconnected it has several components. Let IVI, IEI, IFI, ICl denote the number of vertices, edges, faces, components, respectively.

Thm (Leonhard Euler): $|\mathrm{V}|-|\mathrm{E}|+|\mathrm{F}|=2$ for a connected graph, or more generally: $|\mathrm{V}|-|\mathrm{E}|+|\mathrm{F}|-|\mathrm{C}|=1$
Pf (of the general formula for graphs that may be disconnected) by induction on IEI.
Basis $I \mathrm{E}=0$. Without any edges, a plane graph consists of n disconnected vertices each of which is a components, and a single face: $|\mathrm{V}|-|\mathrm{E}|+|\mathrm{F}|-|\mathrm{C}|=\mathrm{n}-0+1-\mathrm{n}=1$.
Induction step: Assume Euler's formula is correct for all graphs with $|\mathrm{E}|=\mathrm{k}$, and consider an arbitrary graph G with $\mathrm{k}+1$ edges. Choose any edge e in G, delete e to obtain a clipped graph G^{\prime}, and distinguish 2 cases:
a) e is on the boundary of 2 distinct faces of $\mathrm{G}, \mathrm{f} 1$ and f 2 . By deleting e , we lose 1 edge and 1 faces, since the former faces f 1 and f 2 are merged into a single face. The quantity - $|\mathbf{E}|+|\mathbf{F}|$ remains unchanged.
b) e is on the boundary of a single face f of G . By deleting e , we lose 1 edge and we gain 1 component, since the former component that contained e disconnects into 2 components. The quantity - $\mathbf{I E I}-\mathbf{I C l}$ remains unchanged.

Since Euler's formula holds for the clipped graph G' by induction hypothesis, and the deletion of e keeps the quantity $|\mathrm{VI}-|\mathrm{E}|+|\mathrm{F}|-| \mathrm{Cl}$ unchanged, Euler's formula holds also for G.

Thm (the number of edges in a planar graph grows at most linearly with the number of vertices):
G planar, $|\mathrm{VI} \geq 3->| \mathrm{El} \leq 3 \mathrm{IV\mid}-6$
Pf: Consider any embedding of G in the plane. If this embedding contains faces "with holes in them", add edges until every face becomes a polygon bounded by at least $\mathbf{3}$ edges. Proving an upper bound for this enlarged number IEI obviously proves it also for the smaller number of edges originally present. With respect to such an embedding, any edge \mathbf{e} bounds 2 distinct faces.
Hence: \# of incidences (edge e, face f) $=2|\mathrm{El} \geq 3| \mathrm{FI}$.
Together with Euler's formula (*3): $3|\mathrm{~V}|-3|\mathrm{E}|+3|\mathrm{~F}|=6$ we obtain $|\mathrm{E}| \leq 3|\mathrm{~V}|-6$.

4.3 Enumerating all the spanning trees on the complete graph Kn

Cayley's Thm (1889): There are $\mathrm{n}^{\mathrm{n}-2}$ distinct labeled trees on $\mathrm{n} \geq 2$ vertices.
Ex $\mathrm{n}=2$ (serves as the basis of a proof by induction): $1---2$ is the only tree with 2 vertices, $2^{0}=1$.
The most elegant proof of Cayley's Thm is based on Prüfer's coding scheme (1918): it establishes a 1-to-1 correspondence between the set of labeled trees on n vertices and the set of $n \mathrm{n}-2$ vectors of length $n-2$, whose entries are labels chosen from $\{1,2, . ., n\}$.

Ex: The tree T at left is coded using the form shown in the middle, and filled out at right. T's code is 414 .

code (Tn): for $\mathrm{i}<-1$ to $\mathrm{n}-1$ do $\left(\mathrm{L}_{\mathrm{i}}<-\right.$ remove the currently least leaf; $\mathrm{Hi}<-$ the former neighbor of Li$)$ return $\left[\mathrm{H}_{1}, \mathrm{H}_{2}, . ., \mathrm{H}_{\mathrm{n}}-2\right.$]
decode ($\left[\mathrm{H}_{1}, \mathrm{H}_{2}, . ., \mathrm{H}_{\mathrm{n}-2}\right]$:
$\mathrm{H}_{\mathrm{n}}-1<-\mathrm{n}$
for $\mathrm{i}<-1$ to $\mathrm{n}-1$ do $\mathrm{L}_{\mathrm{i}}<-$ the least vertex NOT in $\left\{\mathrm{L}_{1}, . ., \mathrm{L}_{\mathrm{i}-1}\right\} \cup\left\{\mathrm{H}_{\mathrm{i}}, . ., \mathrm{H}_{\mathrm{n}}-1\right\}$
return $\mathrm{T}<-\left\{\left(\mathrm{L}_{1}, \mathrm{H}_{1}\right),\left(\mathrm{L}_{2}, \mathrm{H}_{2}\right), . .,\left(\mathrm{L}_{\mathrm{n}-1}, \mathrm{H}_{\mathrm{n}-1}\right)\right\}$
The proof that Prüfer's code establishes a 1-to-1 correspondence is by induction on n. Cayley's Thm follows.

