
Ch4  Graph theory and algorithms
This chapter presents a few problems, results and algorithms from the vast discipline of Graph theory. All of 
these topics can be found in many text books on graphs. 

Notation:  G = (V, E), V = vertices, E = edges, |V| = n, |E| = m.  Edges can be symmetric of directed (arcs).
Weighted graph  G = (V, E, w), w: E -> Reals. We omit other variations. e.g. parallel edges or self-loops.

4.1 Planar and plane graphs
Df: A graph G = (V, E) is planar iff its vertices can be embedded in the Euclidean plane in such a way that 
there are no crossing edges. Any such embedding of a planar graph is called a plane or Euclidean graph.
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The complete graph K4 is planar K5 and K3,3 are not planar

Thm: A planar graph can be drawn such a way that all edges are non-intersecting straight lines.

Df: graph editing operations: edge splitting, edge joining, vertex contraction:

splitting

joining
ba contraction ab

Df: G, G’ are homeomorphic iff G can be transformed into G’ by some sequence of edge splitting and edge 
joining operations.

Thm (Kuratowski 1930): G is planar iff G contains no subgraph homeomorphic to K5 or K3,3.

Thm (Wagner 1937): G is planar iff G contains no subgraph contractable to K5 or K3,3.

Ex: Finding subgraphs can be tricky, as the Petersen graph shows:

Left: The Petersen graph 
is easily seen to be 
contractable to K5

Right: After removal of 2 edges 
followed by edge joining, the Petersen 
graph is seen to contain K3,3



4.2 Euler’s formula for plane graphs
A plane graph (i.e. embedded in the plane) contains faces. A face is a connected region of the plane bounded 
by edges. If the graph is connected, it is said to contain a single component. If it is disconnected it has several 
components. Let |V|, |E|, |F|, |C| denote the number of vertices, edges, faces, components, respectively. 

Thm (Leonhard Euler):  |V| - |E| + |F| = 2 for a connected graph, or more generally:  |V| - |E| + |F| - |C| = 1 

Pf (of the general formula for graphs that may be disconnected) by induction on |E|. 
Basis |E| = 0. Without any edges, a plane graph consists of n disconnected vertices each of which is a 
components, and a single face: |V| - |E| + |F| - |C| = n - 0 + 1 - n =1.
Induction step: Assume Euler’s formula is correct for all graphs with |E| = k, and consider an arbitrary graph G 
with k+1 edges. Choose any edge e in G, delete e to obtain a clipped graph G’, and distinguish 2 cases:

a) e is on the boundary of 2 distinct faces of G, f1 and f2. By deleting e, we lose1 edge and 1 faces, since the 
former faces f1 and f2 are merged into a single face. The quantity  - |E| + |F| remains unchanged. 

b) e is on the boundary of a single face f of G. By deleting e, we lose1 edge and we gain 1 component, since the 
former component that contained e disconnects into 2 components.  The quantity  - |E| - |C| remains 
unchanged.

Since Euler’s formula holds for the clipped graph G’ by induction hypothesis, and the deletion of e keeps the 
quantity  |V| - |E| + |F| - |C| unchanged, Euler’s formula holds also for G.  

Thm (the number of edges in a planar graph grows at most linearly with the number of vertices):
G planar, |V| ≥ 3  ->  |E|  ≤ 3 |V| -6 

Pf: Consider any embedding of G in the plane. If this embedding contains faces “with holes in them”, add 
edges until every face becomes a polygon bounded by at least 3 edges. Proving an upper bound for this 
enlarged number |E| obviously proves it also for the smaller number of edges originally present. With respect 
to such an embedding, any edge e bounds 2 distinct faces. 
Hence: # of incidences (edge e, face f) = 2 |E| ≥ 3 |F| .
Together with Euler’s formula (*3): 3 |V| - 3 |E| + 3 |F| = 6  we obtain    |E|  ≤ 3 |V| -6 .

4.3 Enumerating all the spanning trees on the complete graph Kn

Cayley’s Thm (1889): There are nn-2 distinct labeled trees on n ≥ 2 vertices.

Ex n = 2 (serves as the basis of a proof by induction):   1---2   is the only tree with 2 vertices,  20 = 1. 

The most elegant proof of Cayley’s Thm is based on Prüfer’s coding scheme (1918): it establishes a 1-to-1 
correspondence between the set of labeled trees on n vertices and the set of nn-2 vectors of length n-2, whose 
entries are labels chosen from { 1, 2, .. , n }. 

Ex: The tree T at left is coded using the form shown in the middle, and filled out at right. T’s code is 4 1 4.

steps      1      2       3    4 = n-1
hinges
leaves

5 = n
#      1      2       3     4
Hi 5
Li 2       3      1      4

4       1      4
2

3

4

5 T

1

code (Tn): for i  <- 1 to n-1 do ( Li <- remove the currently least leaf; Hi <- the former neighbor of Li )
return [ H1, H2, .. , Hn-2 ]

decode ( [ H1, H2, .. , Hn-2 ] : 
Hn-1 <- n
for i  <- 1 to n-1 do   Li <- the least vertex NOT in { L1, .. , Li-1 } ∪ { Hi , .. , Hn-1 }
return T <-  { (L1, H1 ),  (L2, H2 ), .. ,  (Ln-1, Hn-1 ) }

The proof that Prüfer’s code establishes a 1-to-1 correspondence is by induction on n. Cayley’s Thm follows. 


