
Ch 7 Approximation algorithms, online algorithms

Bertrand Russell (1672-1970): Although this may seem a paradox,
all exact science is dominated by the idea of approximation.

7.1 Minimum spanning tree approximation to the traveling salesman problem (TSP)

Algorithm: MST approx to TSP: Given a weighted complete graph G(V, E, w: E -> Reals), where w satisfies
the triangle inequality: for all i, j, k: wik ≤ wij + wjk
Construct a minimum spanning tree MST and use it to construct an MST-tour as the figure shows.

 Start
of tour

MST at left, and one MST-tour at right

Constructing an MST-tour is most easily visualized as walking around the outside of a tree embedded in the
plane. If this walk takes us to a vertex already visited, continue walking until you encounter an unvisted vertex,
then draw a shortcut from the last vertex visited to the newly discovered unvisited vertex. But this construction
requires no geometric properties, only the triangle inequality.

Start the tour at any vertex, say v1. Mark v1 as “visited” and call it the current vertex v. Pick any neighbor of v
and call it the tentative vertex v’. If v’ is not yet marked “visited”, mark it “visited”and call it the current vertex
v. If, on the other hand, v’ is already marked “visited”, replace v’ by any of its neighbors, call this neighbor the
tentative vertex v’, and proceed, until all vertices are marked “visited”

From the construction we obtain the inequality: | MST-tour | ≤ 2 | MST |

Consider any optimal TSP, call it OPT. Any tour minus any of its edges is a tree, and by definition, at least as
costly as an MST. This observation applied to OPT yields:

| OPT minus any of its edges | ≥ | MST | since we don’t know what edges are in OPT
| OPT | ≥ | MST | + | a shortest edge in G | and using | MST | ≥ | MST-tour | / 2
| OPT | ≥ | MST-tour | / 2

Thus, the MST-tour heuristic is a 2-approximation algorithm.

7.2 Vertex cover

Consider a graph G(V, E), or a weighted graph G(V, E, w: E -> Reals).

Df: a subset C of V is a vertex cover of G(V, E) iff every edge e in E has at least one endpoint in C.

The bound problem: “is there a cover C with at most k nodes?” i s NP-complete.
The optimization problem: “construct a minimum cover” is NP-hard.

Greedy algorithm “Check each edge”:
C <- {}; for i = 1 to m do if ei is not yet covered, place both endpoints of ei in C.

Thm: “Check each edge” is a 2-approximation algorithm.
Proof: The greedy algorithm adds 2 vertices to the cover C when an edge e is selected as “not yet covered”.
Due to this “overkill”, edges selected “never touch each other”, i.e. they are never incident to a common
vertex (the edges selected form a matching in G). Thus, each pair of vertices of the cover C constructed by the
greedy algorithm can be uniquely associated with “their own” selected edge. Of the 2 vertices of any such pair,
any cover, including a minimum cover, must include at least 1. QED

7.3 Online algorithms and competitive analysis

List scheduling, minimum makespan scheduling (R. Graham, 1966)

Given a sequence of n Jobs J1, .. , Jj, .., Jn and m machines M1, .. , Mi, .. , Mm, all identical, each machine can
handle any job, but only one job at a time. The duration dj needed to process job Jj on any machine is given.
Starting at time t = 0, schedule the jobs in the order j = 1, ... , j = n of the given sequence. This is called an
online algorithm because, when you schedule any Jj to start at time sj on some machine Mi, you do not as yet
know anything about the remaining jobs still to arrive. Define the makespan as the time when the last job
finishes.

Greedy online scheduling algorithm G:
Schedule the next job in sequence as soon as possible on any available machine.

Ex: consider a sequence of m (m-1) jobs of duration 1, followed by a last job of duration m.
As the figure at left shows, an algorithm that analyzes the entire input before scheduling can produce an
optimum schedule with makespan = m. An online algorithm, on the other hand, is handicapped by the fact that
it sees the longest job only after it has scheduled every other job. The greedy algorithm G produce a schedule
with makespan = 2m-1. In this example, the ratio R of the solution produced by G and an optimal schedule is
R = (2m -1) / m = 2 - 1/m . We will see that this ratio R = 2 - 1/m is a worst case bound. G never needs more
time than R = 2 - 1/m times what an optimal algorithm OPT requires, even though OPT inspects the entire
input sequence before scheduling.

m-1

1
2

m
m

1
2

m
m-1

2m-1

Optimum
schedule
with
makespan
= m

Schedule
produced
by greedy
algorithm

Thm: G is a 2-approximation algorithm, i.e. for any input I, R = G(I) / OPT(I) ≤ 2.

Pf: Consider any job JL that finishes last, i.e. defines the makespan. It was started at some time sL , requires
duration dL , and finishes at time makespan = sL + dL . At time sL all machines must have been busy, or
else JL would habe started earlier. Since an optimal algorithm OPT cannt do better than keeping all the
machines busy at all time, we have sL ≤ OPT. And obviously, dL ≤ OPT. Adding these two inequalities yields:

makespan = sL + dL ≤ 2 OPT.

J1
..
JL
..
Jm

All
machines
are busy < dL >

start
time
 sL

Observe: dL ≤ OPT
 sL ≤ OPT
makespan = sL + dL ≤ 2 OPT

Sharper version of the Thm: G is a (2 - 1/m)-approximation algorithm.
The proof is similar, justify and add the inequality: (Sum of all dj) / m ≤ OPT

