
Theory of computation: Summary of main concepts

6. Effective computability: Turing machines

J. Nievergelt & C. Lucas, 2005.11

Turing Machines (TM)
- M=(Q,A,f:Q x A → Q x A x {L,R,-,H},q0,F)
 different variations (all equivalent):
- one semi-infinite tape
- one doubly infinite tape
- several tapes, 2D-TM

Universal TM (UTM)
interpreter that reads the description of any
arbitrary TM M and executes operations on
data D precisely as M does

Deterministic TM
(DTM)

Non-Deterministic TM
(NDTM)

is a

is a

eq
ui

v a
le

nt
 in

co
m

pu
tin

g
po

w
e r

w
ith

 u
nb

ou
n d

ed
tim

e
a n

d
sp

a c
e

≥
no

t e
q u

iv
al

e n
t w

ith
re

sp
ec

t t
o

co
m

pl
ex

ity

variant

Turing Acceptor
has halt states qa = accept, qr = reject
with 3 possible answers: accept, reject, loop

variant

Turing Semi-decider
- has halt states qa = accept, with
 2 possible answers: accept, loop
- every acceptor can be turned into
 a semi-decider

Turing Decider
- an acceptor that always halts, i.e.
 has 2 possible answers: accept, reject
- every decider is also an acceptor

variant variant

Algorithms

e.g
. d

efi
ne

d b
y

Church-Turing thesis
consists of two parts:
- several models of computation
 are provably equivalent
- thesis: all of these models capture
 the notion of what an algorithm is

rel
ate

d

Computable functions /
Decidable Languages

- both are essentially the same concept
 (decidable is used for binary output,
 computable otherwise)

computable functions can

be expressed as algorithms

Halting Problem
- it is impossible to write a program
 that decides in every case whether
 a given TM halts or not

problem

instance of

Busy Beaver function
- Given n > 0, consider n-state TMs that start with a blank tape.
 The “Busy Beaver function” B(n) is defined as the largest
 number of 1s a n-state TM can write and still stop.
- B(n) grows faster than any computable function, hence is
 not computable

problem instance of

fsm

Semi-decidable /
Recursively enumerable

Languages
- both terms are equivalent

